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The following problem is treated: given a plane acoustic wave propagating through an 
unbounded field of turbulence, calculate the amount of acoustic energy converted into 
turbulent kinetic energy. The fluid velocities due to the acoustic waves and the turbu- 
lence are assumed to be small compared with the speed of sound. Thus the sound- 
turbulence interaction is weak and the turbulent field may be considered to be incom- 
pressible. The analysis is based on the interaction of two opposite effects: the acoustic 
distortion of the turbulence (producing anisotropic Reynolds stresses) and the redis- 
tribution of the kinetic energy among components (tendency towards isotropy) and 
among wavenumbers (energy cascade and dissipation). These phenomena are described 
using semi-empirical turbulence arguments. It is seen that the simplest model for the 
redistribution among components is not sufficient for unsteady flows. A more com- 
plete model is used which is modified to agree with the exact instantaneous distortion 
analysis of Ribner & Tucker to first order. Owing to the two redistribution effects, the 
Reynolds stress behaves inelastically and is out of phase with the acoustic field. Thus 
there is an average production of turbulent energy corresponding to the absorption of 
acoustic energy and attenuation of the incident wave. For nearly isotropic turbulence, 
the attenuation coefficient is found to be proportional to the rate of viscous dissipation 
and independent of the frequency. 

In  order to compare the theory with experiment several constants involved in the 
semi-empirical model of the turbulence must be found. Owing to the lack of better 
information these constants are estimated here by order-of-magnitude considerations. 
No existing experiments correspond to the homogeneous turbulence assumed by the 
theory. Comparison with the few reasonably applicable experiments shows qualitative 
agreement though the importance of the turbulent absorption is generally of nearly the 
same order as the  measurement error. Several discrepancies between jet noise experi- 
ments and aerodynamic noise predictions may be roughly explained using the above 
analysis. 

1. Introduction 
A plane wave propagating through a homogeneous gas at rest attenuates owing to 

molecular relaxation, heat conduction and viscous friction. The attenuation coefficient 
(relative energy loss per unit length) for viscous and heat-conduction effects is propor- 
tional to the square of the frequency of the incoming wave. Molecular-relaxation effects 
are particularly important for oxygen and nitrogen in air and are dependent on 
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water-vapour concentration (Evans, Bass & Sutherland 1972). These effects also often 
increase with frequency. Temperature and velocity gradients involve local variations 
of the speed of sound, and give rise to refraction and scattering. These effects lead to 
changes in the distribution of sound pressure in space without changing the total 
acoustic energy. Most atmospheric absorption measurements include scattering and 
refraction as parasitic effects. Refraction is strongest for acoustic wavelengths small 
compared with the scale of the gradients. A strong attenuation of a beam of sound can 
be caused by interactions with turbulent velocity and temperature fluctuations, 
involving scattering of the incident wave (Brown & Clifford 1976). Although scattering 
does not involve a change in the total acoustic energy, it gives rise to a scattered wave 
(rotated wavenumber vector) whose energy propagates out of the original beam. The 
‘attenuation coefficient’ for such a case is found to be dependent on the frequency of 
the incident wave. Another scattering-based analysis, by Howe (1973), also finds a 
redistribution but no net change in acoustic energy. 

A number of experimental measurements of the absorption of sound in the 
atmosphere are available, but they are generally unreliable owing to the unknown 
variations in refraction and ground effects. For instance, Wiener & Keast (1  959) 
measured an excess attenuation in hilltop-to-hilltop transmission of the order of 

to lo-4m-1 which was independent of the frequency, and attributed it to 
turbulence. Measurements by Dneprovskaya, Iofe & Levitar (1963) and those 
discussed by Brown & Clifford (1976) give similar and larger attenuations. However, 
to a large extent these attenuations can be attributed to beam spreading due to 
scattering. 

Hunter & Lowson (1974) made the first experimental attempt to evaluate the 
attenuation coefficient for a wave propagating through turbulence, excluding non- 
turbulent effects and turbulent scattering. They measured an attenuation coefficient 
of the order of m-1 which was independent of the frequency for all measured 
frequencies (600-5000 Hz). This experiment will be discussed in more detail in 5 5 .  This 
experiment indicates that another attenuation mechanism can occur which is not 
strongly dependent on the frequency. The question arises whether this effect is due to 
the absorption of acoustic energy by turbulence. This kind of interaction could become 
much more important in an intense turbulent flow, like a jet. One of the conclusions of 
this work is that turbulent absorption as well as emission and refraction of sound should 
be considered when dealing with jet noise. 

The present analysis depends upon certain assumptions regarding the temporal 
evolution of turbulence. As the acoustic time scales are generally much shorter than 
the turbulent time scales, most investigators have assumed that there is no change in 
the turbulence structure during the interaction. From a mathematical point of view, 
this enabled them to consider turbulence to be unchanged by the sound wave and 
considerably simplified the analysis in this limit; one then speaks offrozen turbulence. 
In  the present study, the absorption of sound by turbulence is investigated with the 
Reynolds stresses allowed to fluctuate and to evolve with time under the action of the 
sound wave; thus we shall model non-frozen turbulence. 

The present analysis is related to that of Crow (1967,1968), who introduced ‘memory 
functions ’ to describe the ‘ viscoelastic ’ properties of fine-grained isotropic turbulence. 
However, the present analysis models the mechanisms involved in the energy transfer 
at high Reynolds numbers. 
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As a first attempt to solve the problem of the absorption of sound by a frozen 
pattern of turbulence, Noir (1975) and George (1973) used a modal analysis similar to 
that of Chu & Kovasznay (1958). The sound wave amplitude was characterized by a 
small parameter 6 and the turbulent velocity fluctuations by a small parameter e. The 
resulting absorption coefficient was found to be of order e2a2, which is several orders of 
magnitude smaller than that suggested by measurements. 

In  this paper we present a method which deals with non-frozen turbulence by 
modelling the unsteady behaviour of the Reynolds stress as coupled to the sound wave. 

2. The Reynolds-stress equation 
From an energy point of view, the absorption of acoustic energy by turbulence 

produces additional turbulent kinetic energy which is eventually dissipated by 
viscosity. The production term in the turbulent kinetic energy equation involves 
mean-flow gradients and the normal Reynolds stresses. A model of the coupling 
between the Reynolds stress and the mean flow will be seen to result in a time-average 
production of turbulent kinetic energy. 

The incident sound field (mean flow) is given by a plane harmonic wave 

u, = Sy-la cos (kz, - wt), 

where 6 is a small dimensionless parameter characteristic of the wave amplitude, y is 
the adiabatic exponent, a the speed of sound, k the acoustic wavenumber and w the 
corresponding angular frequency ; the sound field ia compressible and time dependent. 
The undisturbed turbulence is assumed to be homogeneous and turbulent density 
fluctuations are neglected. The equation of conservation of mass is 

for the mean flow and 
ap au. 

ui-+p -% = 0 
axi ax, 

for the turbulent field, where p and Ui are the mean density and velocity fields and 
ui is the fluctuating velocity field. The Reynolds-stress equation is 

where p ,  aij and fi are the pressure, viscous-stress tensor and random body-force 
fluctuations. An overbar indicates an ensemble average. The terms in (3) are usually 
interpreted as the total rate of change of the Reynolds stress, the turbulent and viscous 
diffusion, redistribution of the turbulent energy among its different components, 
production due to the interaction between the mean flow and the Reynolds stress, 

2 0 - 2  
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production due to body forces, and viscous dissipation of the turbulent energy. Since 
we treat the simplest case of homogeneous isotropic turbulence, we introduce random 
body forces f i  as the driving mechanisms for the undisturbed turbulence. In a typical 
application, the turbulence might actually be driven at large scales by interactions 
between the mean shear and the Reynolds stress. However, as a result of the energy 
cascade process, the smaller-scale turbulence may be approximated as isotropic as 
assumed in the present analysis. It may be shown for acoustic interactions that the 
diffusion terms are generally of secondary importance (Noir 1975). The pressure- 
strain correlation or redistribution terms and the dissipation terms of (3) will be 
modelled using semi-empirical arguments. 

For locally isotropic flows, the dissipation terms may be expressed as 

where e is the rate of viscous dissipation. In  equilibrium, the rate of viscous dissipation 
corresponds to the rate at  which energy is transferred from large-scale eddies to small- 
scale eddies; it is independent of viscosity for high Reynolds number turbulence. We 
are interested in the amount of energy which is transformed by this nonlinear cascade 
process into viscous dissipation. Therefore it is reasonable to model the dissipation in 
terms of the large-scale end of the cascade. Daly & Harlow (1970) considered the 
dissipation to be proportional to the Reynolds stress. Using the same idea, we write 

where $ is a characteristic time for the decay of the turbulence. 
For the pressure-strain correlation or redistribution terms, we first consider the 

simplest form of the model originally suggested by Rotta (1951). The basic idea is that 
the net energy exchange among components is proportional to the degree of anisotropy. 
Therefore a relaxation model for the redistribution is written as 

1 - -  pt(””.%)l = - -(pui uj -put,  &), 
axj axi relax $ 

_c -- 
where $so = QuL u k  and $ has the dimensions of time and may be taken as a character- 
istic time for the return of the Reynolds stress to isotropy. 

We now compare this simple relaxation model of the Reynolds-stress equation with 
the exact results which can be derived for an ‘instantaneous ’ distortion of a turbulent 
field. An ‘instantaneous’ distortion is one which is rapid enough that the nonlinear 
redistribution and cascade terms do not have time to act significantly, i.e. distortion 
occurring over times short compared with q5 and 4. In  such a case, the redistribution 
and dissipation models given above will not Contribute to the Reynolds-stress equation. 
Only the mean-flow production terms will contribute, giving for our case 
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The effect of an 'instantaneous' distortion on the behaviour of the longitudinal 
and lateral components of the turbulent energy is given exactly by Batchelor (1953, 
p. 68) for an incompressible mean flow and by Ribner & Tucker (1952) for a com- 
pressible mean flow. Both these analyses consider the turbulence to be initially iso- 
tropic and the distortion to be uniform. Using the last reference, the change in the 
Reynolds stress for our case is computed to be (see appendix) 

- - 
d(puiuj)/dt = - A i j ~ ~ u : ~ ,  aU1/aX, + 0(6'), (9) 

where 
l 1  0 0 

A =  i- g 0). (10) 
0 ;  

This result differs from ( 8 )  but, since Aii = Bti = 5, it  is clear that both methods give 
the same result for the total turbulent energy. 

However, (6) does not account for the rapid redistribution of energy among com- 
ponents. This mean-strain, or rapid-redistribution, effect was modelled by Rotta 
(1951) for isotropic turbulence as 

rapid 
or for our case as 

where the coefficients would be 

Adding (1  1) with these coefficients to the Reynolds-stress equation is still not sufficient 
to match the exact results (8) and (10) of Ribner & Tucker. In order to do so, we intro- 
duce a modification such that C in the rapid part is taken as 

0 

(12) 
0 0 0  

It may be noted that now, since Cii = 0, this term does not change the overall turbulent 
energy during a rapid distortion. 

For our case of a one-dimensional wave, the Reynolds-stress equation (3) with 
(4)-( 12) then becomes 

d -  1 - -  1 -  - dtpuiuj = --(puiuj-pu:s,6ij)--puiuj6ii 
@ 45 

Now if the acoustic wavelength is large compared with the turbulent scales the dis- 
tortion due to the wave will be locally homogeneous and the Reynolds stresses may be 
considered as functions of time or the acoustic wave phase only. As the whole proccss 
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does not involve any shear, the Reynolds shear stress, which was zero before the 
arrival of the wave (homogeneous turbulence), is still zero. If  the normal stresses are 
written as - - - 

m = poulult n = p0u2u2, P = p0~3u31 

(13) may be written as three scalar equations which in canonical form read 

1 1 11 w s  
?h+- (2m-n-p )+-m-2u1 f ,  = - -msin(kx,-wt)$O(S2), (l4a) 

3@ #J 5 Y  

1 1 7 0s f i+- ( zn -m-p)+  -n-2u f - - -nsin(kz , -wt)+O(S2) ,  
311r @ 2 2 - 5  y 

1 1 7 ws $+- ( 2 p - m - n ) + - p - 2 u  f - --psin(kz,-wt)+0(S2). 
3@ @ 3 3 - 5 1 1  

The corresponding reference conditions (no wave) are 

m = m,, n = n o ,  p = p o  for t < 0. (15) 

Equations (1  4) are similar t'o the equation of an electric parallel RC circuit and to the 
equation of the viscoelastic Maxwell body (a spring and a dashpot in series) in con- 
tinuum mechanics. The riscoelastic character of turbulent flows, first pointed out by 
Rivlin (1957), has been broadly discussed since. However, from (14), i t  is obvious that 
the so-called viscoelastic properties of the Reynolds stress are due to the redistribution 
processes (among components or in wavenumber space); they are independent of 
viscosity, except a t  very small scales. To avoid possible confusion, the term inelastic is 
preferable to viscoelastic. 

Neglecting the transient associated with the initiation of the interaction, the solu- 
tion of (14) is assumed to be of the form 

m = mo[ 1 + 6al cos (kx, - w t )  + Sa, sin ( k q  - wt) ]  + O(S2),  (16a)  

n = n,[l + Sb, cos (kz, - wt)  + Sb, sin (kz, - wt)] + O(S2),  (16b) 

p = po[ l  + 6 c , c o s ( k ~ , - w t ) + 6 c , s i n ( k ~ , - w t ) ] + 0 ( S 2 ) .  ( 1 6 4  

(17a) 

(17b) 

(17c) 

The zeroth-order solution leads to 
- 

(3$)-1( 2m, - no -Po) + p m o  = 224, fi) 

(3$)-1 (2n, - m, -po )  + $-In, = 2 ~ 7 , )  

(351.)-' ( 2p, - m, - no) + #J-'p0 = 2u3f3. 
- 

This equation expresses the production-dissipation balance, i.e. shows how random 
body-force production balances redistribution and dissipation. 

For reasons of simplicity, the coefficients a,, b,, etc. are computed explicitly in the 
case of initially isotropic turbulence only (m, = no = p,). Another useful but inessen- 
tial simplification results if we assume high frequency sound so that 

w @ $ - l ,  w # J $  1. (1% (19) 

Then the second-order quantities of the form (w2$@)-l may be dropped. This assump- 
tion is valid for most cases of practical interest and is approximately valid for the 
self-generated sound from turbulence. 
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For the first-order terms identification of the sine and cosine terms leads to four 
equations (by symmetry, n = p ,  b, = c, and b, = c,). The coefficients are found to be 

11 7 
a, = - b, = c, = -, 

5Y' 5Y 

8 1 1 1 1  +-- '- 15yw$ 5ywy5' 
a --- 

4 1 7 1  +--. b, = c2 = --- 
1 5 Y 4  5 Y 4  

3. The turbulent kinetic energy equation 

energy equation 
The contraction of the Reynolds-stress equation (3) gives the turbulent kinetic 

- 
- aui -auk au. -- aUi 

%/c 

= -puiuk--l u u -+p"+uifi-ui/c-. (21) axk 2P i iaz, axi 

The absorption of acoustic energy by turbulence is equal to (minus) the part of the 
production of turbulent kinetic energy due to the wave. The word 'production' now 
has to be interpreted in a broad sense since, when dealing with a compressible mean 
flow, the contracted pressure-strain correlation term could play the role of an energy 
source and does not necessarily vanish. However, in our case using (6)  and (11) to  
model the redistribution shows that the term does vanish. The production then reads 

- au, - au, 
- - pu, u, - - *pui ui -. 

dt prod - 8x1 8x1 

The first part describes production due to the work done by the Reynolds stress against 
the wave, the second part that  due to compressibility effects. The average production 
is obtained by taking the time average of the production over one acoustic period; 
using in (22) the expressions (16) and (20) for the time-varying Reynolds stress, this is 

The production is positive, so that the acoustic energy is seen to decrease during the 
interaction. 

The attenuation coefficient corresponding to the absorption of sound is derived from 
the definition 

where dQ is the acousticenergy loss per unit volume and I, = poa,l Uo12 is the intensity 
of the incoming wave. As 1 U,l = a, 6/y,  

at = dQ/&,  (24) 
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In  his analysis, Crow (1967) gets a related expression, with the argument of his ‘mem- 
ory function’ instead of 4-1. On the basis of existing experimental results, Lumley 
(1970) found that the return to isotropy is faster than the decay by a factor of the 
order of 4, so that 

Comparison of (5) and (6) shows that for locally isotropic turbulence 

@ = $4. (26) 

f$ ‘v #u;so/€. (27) 

a, -N 2*3s/a& (28) 

- 

Therefore the attenuation coefficient becomes 

4. Assumptions 
The present analysis is based on several assumptions; some are quite reasonable, 

others are weaker. The first basic assumption is concerned with the size of the para- 
meter 6 characterizing the wave amplitude; it has to be small enough to ensure the 
convergence of the above expansions. As S is generally of order for the loudest 
sounds of interest, this assumption is not restrictive. 

As previously mentioned, the neglect of diffusion terms in the Reynolds-stress 
equation would not be expected to affect the first-order results. 

In  order to simplify the algebra we restricted some developments to high frequency 
waves: w@ 1. This condition is not always fulfilled, for example in the case of the 
propagation of very low frequency waves through the atmosphere. However, when 
this condition is not strictly satisfied, the energy transfer mechanisms are similar and 
the order of magnitude of the present results should still be useful. 

Turbulence modelling is generally based on experimental results; here the quantities 
4 and @ are not known, and are estimated on the basis of physical reasoning in the 
applications. This is certainly the major source of errors in the applications. 

An important assumption was concerned with the locally homogeneous character of 
the distortion. This assumption may be removedif we assume that only eddies of scale 
smaller than the acoustic wavelength contribute to the attenuation process. This 
assumption seems reasonable, since, when the acoustic wavelength is smaller than the 
scale of a given turbulent Fourier component, the space-average distortion of that 
turbulent component will be negligible. From spectral analysis, it may be shown that 
the contribution to the absorption process of eddies of wavenumber K in the range 
[K,  K + d ~ ]  is approximately given by 

a&) 2: 0 * 7 a t 3 [ E ( ~ )  K ] %  d K .  (29) 

E(K)  N 1 * 5 ~ 3 ~ - # ,  (30) 

For turbulence which can be characterized very roughly by a spectrum of the form 

i.e. by only an inertial range extending from Lo, the largest length scale of the flow, to 
the Kolmogorov scale 7, the attenuation coefficient can be found to be 

at N 1.3a;3eIn ( L o / y ) .  (31) 
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In the case where the acoustic wavelength is smaller than the integral scale, the lower 
limit of integration (over wavenumbers) is taken as the acoustic wavenumber, so that 

5. Comparison between theory and experiment 
Turbulence generally occurs in conjunction with mean flows such as wind, buoyancy- 

induced flows, jets, wakes, boundary layers, etc. Therefore measurements of sound- 
turbulence interactions include refraction, scattering and absorption by turbulence, 
as well as molecular and viscous effects. Molecular and viscous effects are well under- 
stood and are usually subtracted from the experimental data. Refraction by tem- 
perature and velocity gradients may be taken into account only if the gradients are 
described by simple functions and geometrical acoustics applies; refraction by large- 
scale turbulent motions is difficult to analyse. As a consequence, comparison of the 
results of the present analysis with measurements of atmospheric attenuation attri- 
buted to turbulence showed strong discrepancies, suggesting that. the turbulent absorp- 
tion is of only secondary importance in that case; the strong effect of turbulence on 
sound attenuation then must be explained by other mechanisms, such as scattering and 
ground absorption. 

The experiment of Hunter & Lowson 
In order to measure the attenuation of a sound wave due to turbulence effects only, 
Hunter & Lowson (1974) devised the following experiment: they measured the 
reverberation time of a small room, first under quiescent conditions, then while the air 
of the room was strongly turbulent. The reverberation time was found to be shorter 
for turbulent conditions, corresponding to an extra attenuation coefficient of order 

m-I attributable to turbulence interactions. The measured attenuation coefficient 
was approximately independent of frequency, whereas scattering and spectral broad- 
ening are proportional to frequency squared. In  addition to energy absorbed by the 
turbulence, there may be three other effects: changes in the acoustic propagation 
speed, scattering of the waves andspectral broadening. As these other interactions do 
not involve a change in the energy balance, Hunter & Lowson suggested that acoustic 
energy may be absorbed by the turbulent field. 

Another conceivable explanation might be that acoustic energy is absorbed by the 
boundary layers on the moving fan blades. This mechanism is related to the experi- 
mental and theoretical results (Ingard & Singhal 1974) that sound propagating along 
a duct is attenuated owing to the quasi-steady change in turbulent friction due to the 
velocity fluctuations of the sound. It might seem that the fan-blade boundary layers 
would behave similarly and explain the measured additional attenuation. A crude 
order-of-magnitude estimate of this effect was made by assuming that the blades’ 
absorption coefficient per unit area is the same as that of the duct walls in Ingard & 
Singhal’s results. Using a blade area of twice the fan-disk area, one finds that the equi- 
valent attenuation coefficient for this effect is of order 6 x m-l, which is far smaller 
than the measured additional attenuation. 
To compare theory with experiment, a detailed description of the turbulent flow 

field is required. Unfortunately, only one hot-wire probe was used. As a rough approxi- 
mation, we may say that the flow in the room is jet-like downstream of the fan and 
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FIGURE 1. Sketch of a subsonic round jet. 
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FIGURE 1. Sketch of a subsonic round jet. 
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FIGURE 2. Dimensionless dissipation rate as a function of position. 0, experiment 
(Friehe et al. 1972). 
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sink-like upstream. This implies that the turbulent flow pattern inside the room is quite 
heterogeneous and leads to large differences between methods of estimating the rate of 
viscous dissipation E in the room. In addition, the present analysis assumes homo- 
geneous turbulence. According to the hot-wire measurements, 

-_ 
E - ( U ~ ) % / Z  101112s-3. 

An overall production-dissipation balance based on the energy input of the fan leads 
to E - 100 m2 s - ~  whilst maximum specific kinetic energy input arguments give 
E - 1000m2s-3. Using the crude estimate E = 100-1000 m 2 r 3 ,  the predicted attenua- 
tion coefficient becomes 10-5-10-4 m-l, while the measured attenuation is of order 
low3 m-1. However, as noted by Hunter & Lowson, the experimental results are only 
approximate and nearly qualitative. 

The experiment of Lush 

The measurements ofsubsonic jet noise by Lush (1971) were made for a particularly 
clean configuration. Comparison with Lighthill’s theory, which does not take refrac- 
tion into account, shows some discrepancies, particularly for small angles with respect 
to the jet axis and at high frequencies. For example, Lighthill’s quadrupole analogy 
predicts that the frequency of the emitted sound increases with increasing jet speed; 
experiment shows that this is not true close to the jet axis. Lush also measured a 
breakdown of the convective amplification effect near the jet axis. Several of these 
discrepancies may be explained by refraction and scattering arguments as well as by 
considering the turbulent absorption of sound. However, as will be seen below, the 
discrepancies occurring in the total acoustic power of the jet cannot be explained by 
refraction and scattering, and may be a t  least partly attributed to turbulent absorp- 
tion, though perhaps other explanations could also be given. 

A schematic sketch of the jet is given in figure 1. Because of the self-preserving 
character of the flow, it is convenient to introduce the dimensionless variables 

6 = x / D  and 7 = y/D ( D  = 0-025 m in the experiment of Lush). 

For simplicity, the different flow properties are considered to be constant in a plane 
normal to the jet axis, though they actually vary strongly in the shear region. 

For homogeneous, nearly isotropic turbulence, the theory predicts that the absorp- 
tion is proportional to the viscous dissipation rate E .  The longitudinal distribution of 
the dimensionless dissipation rate is given by Friehe, Van Atta & Gibson (1972) for a 
fully developed jet; it has a universal character with slope c-4, as shown in figure 2. 
The curve is extended to the mixing region on the basis of Rotta’s (1951) relationship 
for locally isotropic turbulence a t  high Reynolds number: 

where 1 is an integral scale. The values of 1 and the turbulence intensity (2)4 as a 
function of the longitudinal co-ordinate are taken from Davies, Fisher & Barratt 
(1963). The value of the dimensionless dissipation rate E* = E D U ; ~  is plotted in 
figure 2. In the mixing region, it is a function of position andMachnumber. Forfurther 
convenience, the two curves are approximated by straight lines with slope cdp6 
and c-288. 
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5 = r / D  

FIGURE 3. Dimensionless peak frequency as a function of position. 0, experiment (Lee 1971). 
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FIGURE 4. Velocity dependence of acoustic power compared with theory. 
0, 0, experiment (Lush 1971). 

Using dimensional analysis, Powell (1 953) estimated the longitudinal distribution of 
the source peak frequencies as well as the noise spectrum. The frequency is propor- 
tional to C-l in the mixing region and to [-2 in the fully developed jet. These theoretical 
results have been confirmed experimentally; figure 3 shows typical results due to Lee 
(1971). 

The basic sound field of a jet is roughly ellipsoidal as discussed by Ribner (1969) but 
convection of the quadrupoles by the mean flow results in a strong amplification in the 
direction of the flow. In addition, velocity gradients refract acoustic rays out of the jet, 
making the actual noise pattern heart-shaped. The discrepancies between the measure- 
ments of the acoustic field, which show the above effects, and the predictions of Light- 
hill, which do not account for refraction, might be due to refraction (Schnbert 1972); 
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however, as mentioned previously, sound scattering and refraction do not change the 
overall energy balance. Therefore the discrepancy between measurements and pre- 
dictions of the total acoustic power of the jet (figure 4) cannot be explained by refraction 
and scattering effects, and may be associated with turbulent absorption. 

From figures 2 and 3, it is evident that a high frequency wave, emitted near the 
nozzle exit and propagating along the jet axis, travels through a region of relatively 
high dissipation rate and may be significantly damped; if it  propagates in a direction 
normal to the jet through only a thin layer of turbulent flow, its damping is negligible. 
Also a lower frequency wave, emitted downstream of the potential core, is not damped 
significantly, since it only travels through weaker turbulence (in any direction). 

An order-of-magnitude estimate of this phenomenon has been carried out (Noir 
1975). The effective location of the acoustic sources is assumed to be [ = 3 (figure 1). 
The intensity loss in the turbulent field along a given ray is computed from (28) and 
then integrated over a spherical shell of radius R = 3 m, as for the experiments. For a 
jet Mach number equal to 0.9, the total acoustic energy absorbed is found to be of 
order 0.1 W. Lush (1971) measured a total acoustic power of 0.6 W while Lighthill's 
theory as applied by Lush predicts 2 W, giving a discrepancy in energy of 1.4 W. It 
may be concluded that, in view of all the above approximations, the present analysis of 
turbulent absorption gives a rough estimate of a t  least part of the energy defect. 

6. Conclusions 
The Reynolds-stress equations and the turbulent kinetic energy equation were used 

to determine the production of turbulent energy due to an acoustic wave or in other 
words, the absorption of acoustic energy by a turbulent field. In  the Reynolds-stress 
equations, the redistribution terms (among components and among wavenumbers) 
were replaced by simple models. In  the present analysis the constants appearing in 
these models have not been determined experimentally, so that order-of-magnitude 
estimates were introduced on the basis of physical mechanisms and comparison wit'h 
known theoretical results. Owing to the opposing effects of the distortion of the turbu- 
lence (producing Reynolds stress) and of the redistribution of the kinetic energy 
among components (tendency towards isotropy) and among wavenumbers (energy 
cascade), it  is seen that the Reynolds stress behaves similarly to the stressinaninelas- 
tic body. As a result it is not in phase with the acoustic strain field (8 2), and thereis an 
average production of turbulent energy and thus attenuation of the wave. 

The analysis applies to one-dimensional sound waves in homogeneous isotropic 
turbulence and could be extended to sound propagation in simply sheared homo- 
geneous anisotropic turbulence. Some assumptions were introduced to simplify the 
algebra, but they were not of fundamental importance and can be removed. The 
assumption of uniform distortion wa5 removed by including in the computation only 
those eddies which are smaller than the acoustic wavelength; such reasoning remains 
to be verified. 

Comparison with existing experimental results shows that the results of the present 
analysis are of nearly the correct order of magnitude but generally low; this suggests 
that the theoretical as well as the experimental approach should be refined. From the 
theoretical point of view, a more refined model of the Reynolds-stress equation could he 
introduced, better estimates for the characteristic times q3 and @ could be found, etc. 
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From the experimental point of view, experiments satisfying the assumptions of the 
analysis should be carried out (homogeneous turbulence, simple turbulent shear flow, 
etc.). The approach of Hunter & Lowson is particularly fruitful in excluding most 
non-turbulent effects, but the character of the turbulent flow in their particular experi- 
ment was quite complicated and difficult to compare with the analysis. In  atmospheric 
attenuation measurements, it  is suggested that the frequency dependence is a useful 
parameter with which to compare attenuation mechanisms. I f  radial-spreading, 
molecular and relaxation effects are subtracted from the measurements, then scattering 
increases with frequency, re fraction is negligible a t  very low frequencies and becomes 
more important at  high frequencies (geometrical acoustics), whiie the present pheno- 
menon of turbulent absorption is essentially frequency independent (except at  very low 
frequencies). In  any future experiments, it will be necessary to focus attention on both 
acoustic and turbulent measurements. 

In  summary, this paper analyses a mechanism for the absorption of acoustic energy 
by turbulence. The dynamics of theresponse of the turbulence to distortion were 
modelled and the magnitude of the relaxation time scales estimated by an order-of- 
magnitude approach. Agreement with experiment is not yet very good fromaquanti- 
tative point of view. When both turbulent flow and noise are present, the phenomenon 
may be of importance in aeroacoustics and noise-control technology. 

This work was supported by the U.S. Air Force Office of Scientific Research under 
Grant AFOSR-74-2659. 

Appendix. Computation of the instantaneous Reynolds-stress production 
after Ribner & Tucker 

I n  the case of a wind-tunnel contraction, a cubic element D x D x D is deformed into 
a parallelepiped D1, x Dl, x Dl,; I,, 1, and 1, are the normal strain components. The 
continuity condition requires 

cTl,l,13 = 1,  

where c~ =p/po.  The distortion caused by an acoustic wave is comparabIe to 
a fictitious contraction with 1, = l3 = 1 and 1, = l/g = po/p. Then Ribner & 
Tucker’s method may be used to describe the effect of an instantaneous acoustic 
distortion on the Reynolds stresses. If the turbulence is homogeneous and initially 
isotropic, the longitudinal and lateral correlations are given by Ribner & Tucker 
(1952) as 

where p is computed from (1) .  
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or 

These correlations become, to first order, 

if density acoustic fluctuations are accounted for. The instantaneous production of 
Reynolds stress is obtained by differentiating (A 4) with respect to time: 

where 
L1 0 0 

A =  (g- p 0). 
0 ;  
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